AVALIAÇÃO DAS PROPRIEDADES CINÉTICAS E TÉRMICAS DA ENZIMA β-GALACTOSIDASE DE Kluyveromyces marxianus ATCC 16045.

Luisa Sala, Patrícia Aveiro Gomes, Anna Rafaela Cavalcante Braga, Susana Juliano Kalil

1. INTRODUÇÃO

A β -galactosidase é uma importante enzima utilizada industrialmente na hidrólise da lactose (Gékas & López-Leiva, 1985). Sua larga aplicação na indústria de laticínios possibilita a obtenção de alimentos com baixos teores de lactose, tornando-os ideais a consumidores intolerantes a este açúcar, e melhorando a solubilidade e digestibilidade de leites e seus derivados (Mahoney *et al.*, 1974).

Estudos realizados anteriormente com outra cepa de *Kluyveromyces marxianus* (CCT 7082) mostraram que a enzima não apresenta a estabilidade térmica desejada para ser aplicada na produção de laticínios (Manera, 2006), sendo, portanto, de interesse industrial o estudo de outras fontes de -galactosidase buscando uma enzima mais estável.

A caracterização enzimática envolve o conhecimento das propriedades, como os parâmetros cinéticos e termodinâmicos e a estabilidade térmica da enzima, facilitando sua aplicação. Nesse contexto, este trabalho teve por objetivo caracterizar a enzima β-galactosidase de *Kluyveromyces marxianus* ATCC 16045, quanto aos parâmetros cinéticos, termodinâmicos, estabilidade térmica e valores de D e z.

2. MATERIAL E MÉTODOS

A enzima β-galactosidase foi produzida por fermentação submersa em frascos agitados a 30°C e 180 rpm, empregando lactose de soro de leite como substrato.

Determinação dos parâmetros cinéticos

Foi realizada a determinação dos parâmetros cinéticos Km e Vmáx medindo-se a atividade enzimática em diferentes concentrações de ONPG (1-10mM).

Estabilidade térmica e parâmetros termodinâmicos

Incubou-se a enzima, na faixa de temperatura entre $35-55^{\circ}$ C, sendo determinada a atividade enzimática ao longo do tempo, calculando posteriormente a constante cinética de desnaturação térmica, K_d , e o tempo de meia vida, $t_{1/2}$.

Através dos dados de estabilidade térmica foi possível calcular os parâmetros termodinâmicos da -galactosidase: a energia livre de Gibbs (Equação 1), entalpia e a entropia (Equação 2).

$$\Delta G = \Delta H - T \Delta S \tag{1}$$

$$\ln\left(\frac{Kd}{T}\right) = \ln\left(\frac{K}{h}\right) + \frac{\Delta S}{R} - \left(\frac{\Delta H}{R}\right)\frac{1}{T} \tag{2}$$

Onde: R é a constante universal dos gases, T a temperatura absoluta, h é a constante de Planck e K a constante de Boltzmann. Também foram calculados os parâmetros D (Equação 3) e z (Equação 4) para expressar a inativação da enzima em estudo.

$$D = \frac{A - 2,3026}{K_d} \tag{3}$$

$$\log \frac{D_2}{D_1} = \frac{T_1 - T_2}{z} \tag{4}$$

3. RESULTADOS E DISCUSSÃO

Os valores de Km e Vmáx foram 1,98 mM e 20 U.mL⁻¹. O valor de Km estimado foi cinco vezes menor que o encontrado por Manera (2006), mostrando uma alta afinidade pelo substrato ONPG que estudos com outra linhagem.

O estudo da estabilidade da enzima mostrou que o tempo de meia-vida para temperatura de 35°C foi de 38,5 h para a cepa em estudo e 10,5 h para *K. marxianus* CCT 7082, portanto, a enzima produzida mostra-se mais estável que a utilizada em estudos prévios.

A energia de ativação (E_a) calculada para a β-galactosidase foi de 37,04 kJ.mol⁻¹ enquanto que a energia de ativação da reação de desnaturação (E_d) foi de 327.7 kJ.mol⁻¹.

Tabela 1: Parâmetros termodinâmicos e valor D da -galactosidase a diferentes temperaturas.

Temperatura (°C)	K _d (min ⁻¹)	t _{1/2} (h)	G (kJ.mol ⁻¹)	H (kJ.mol ⁻¹)	S (kJ.mol ⁻¹ .K ⁻¹)	D (min)
35	0,0003	38,5	108,2	323,9	0,700	7666,7
37	0,0003	38,5	106,8			7666,7
40	0,0006	19,3	104,7			3833,3
45	0,0252	0,5	101,2			91,3
50	0,0883	0,1	97,7			26,1
55	0,3129	0,04	94,2			7,4

Os valores de G estão na ordem de magnitude esperada para esse tipo de reação (94,2-108,2). Altos valores de entalpia também são características da reação de desnaturação protéica (Ortega *et al.*, 2004). Os valores de H e S fornecem o número de ligações não covalentes quebradas e a variação da desordem do sistema. O valor z calculado foi de 6.62°C.

Agradecimentos: Fapergs e CNPg.

4. REFERÊNCIAS BIBLIOGRÁFICAS

GÉKAS, V.; LÓPEZ-LEIVA, M. **Hydrolysis of lactose: a literature review.** Process Biochemistry, v. 20, p. 1-12, 1985.

MAHONEY, R. R.; NICKERSON, T. A.; WHITAKER J. R. Selection of strain, growth conditions, and extraction procedures of optimum production of lactase from *Kluyveromyces fragilis*. Journal of Dairy Science, v. 58, n. 11, p. 1620-1629, 1974.

MANERA, A. P. Otimização do meio de cultura para produção da enzima β-galactosidase de *Kluyveromyces marxianus* CCT 7082 e caracterização parcial da enzima. Rio Grande, 2006. 76 f. Dissertação (Mestrado em Engenharia de Alimentos) – Universidade Federal do Rio Grande.

ORTEGA, N.; DIEGO, S.; PEREZ-MATEOS, M.; BUSTO, M. D. **Kinetic properties and thermal behaviour of polygalacturonase used in fruit juice clarification.** Food Chemistry, v. 88, p. 209–217, 2004.